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Free-energy calculations with multiple Gaussian modified ensembles
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We present a Monte Carlo algorithm, which samples free energies of complex systems. Less probable
configurations are populated with the help of a multitude of additional Gaussian weights and parallel tempering
is used for efficient Monte Carlo moves within phase space. The algorithm is easily parallelized and can be
applied to a wide class of problems. We discuss algorithmic performance for the case of low-temperature phase
separation in two-dimensional and three-dimensional Ising models, where we determine the magnetic interface
tension. Multiple Gaussian modified ensemble simulations, unlike multicanonical ensemble simulations do not
require a priori knowledge of the free energy and are of similar efficiency as multicanonical ensemble and

Wang-Landau simulations.
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I. INTRODUCTION

In recent years, interest in complex systems has increased
and one of the central computational challenges there is the
determination of the free energy in theories with an underly-
ing Gibbs measure. The properties of first-order phase tran-
sitions, glassy materials, proteins, and possibly many more
complex systems all can be studied in terms of the free en-
ergy. In general, the partition function exhibits for certain
parameter values several or even many distinct phase-space
sectors separated by free-energy barriers corresponding to
probable configurations. It is then a common feature of the
class of problems considered here, that barrier-free energies
are large at low temperatures or for systems with many de-
grees of freedom. Monte Carlo simulations are then con-
fronted with a practical problem: Depending on the initial
conditions, the Monte Carlo process can get stuck at a local
maximum of the probability and full phase space is never
sampled within reasonable amounts of computer time. It is
thus of interest to develop efficient and robust Monte Carlo
algorithms, like umbrella sampling [1] and multicanonical
ensemble simulations [2,3], which address this and related
sampling problems.

Several years ago, a solution to the particular exponential
slowing-down problem at energy-driven first-order phase
transitions was given [2,3]. In multicanonical ensemble
simulations (muca) the rules of importance sampling are
changed. At the transition point 7. of a first-order phase tran-
sition the suppression of configurations with mixed phases of
droplets is lifted upon modifying the Boltzmann factor to

-B.E+W,  ..(E
PB =¢ B( muLa( )’

(L.1)

with B.=1/kgT,. the inverse transition temperature and
explW,uco(E)] denoting the multicanonical weight factor.
The logarithmic weight is chosen to approximate
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W owea(E) = —In g(E) + B.E + const, (1.2)

where g(E) denotes the number density of states at energy E.
In particular, we find the multicanonical partition function

Zyuca = const 2, g \(E)

conf

(1.3)

and thus the Monte Carlo process visits all configurations at
energies E, even for energies within the mixed phase, with
almost equal probability P,,,.,(E) = const. In multicanonical
ensemble simulations it is possible to choose a polygon for
the curve W,,,.,(E) with a piecewise representation

Wmucu(E) == ABzE +¢ (1 4)

on some carefully selected energy intervals E,<E<E,,
with i=1,...,N,,. The Boltzmann factor of Eq. (1.1) has

almost the canonical form Pg=exp[—-BE+c;] with an

energy-dependent inverse temperature ,[AS,: B.+AB; and the
latter property determined the name, multicanonical en-
semble. The canonical probability distributions P,,,(E) of
the energy are recovered with a final reweighting step

Pcan(E) o e_Wmum(E)Pmuca(E) (15)

quite analog to the reweighting introduced a long time ago
by the pioneering work of Ferrenberg and Swendsen [4].

Multicanonical ensemble simulations at first-order phase
transitions are designed to reduce exponentially large ergod-
icity Monte Carlo time scales

75 etlB (1.6)

caused by barrier-free energies Fp, which for first-order
phase transitions of d-dimensional systems on L? boxes typi-

cally behave as
Fy=const L7, (1.7)

with a value of constzZU'O.1 Exponential slowing down in
multicanonical ensemble simulations is reduced significantly,

'Barrier spin configurations on two-dimensional (2D) L? boxes
contain a lens-shaped droplet with Fz=2.2692...6L.
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though cannot be avoided completely. For two-dimensional
(2D) systems it was shown in a recent work [5] that crystal-
shape phase transitions within the two-phase separated
phase-space region and the evaporation/condensation (E/C)
phase transition from a gas of small droplets to a large nucle-
ated droplet cause additional free-energy barriers

Fperysian = 0.1346 ... 261, (1.8)

FB,E/C = CL2/3, (19)

with & denoting the effective interface tension from the
Waulff construction for droplets and a value of ¢ as given in
Ref. [5]. The maximum value

FB,crystal = maX[FB,crystal’FB,E/C] (110)

determines the rate of residual exponential slowing down in
multicanonical ensemble simulations of 2D systems for large
system sizes. A generalization of this result to higher-
dimensional systems is nontrivial and did not yet appear in
the literature. Nevertheless, production type multicanonical
ensemble simulations of first-order phase transitions in spin
models, as well as in lattice gauge theories, have demon-
strated large efficiency gains if algorithmic performance is
compared to standard Monte Carlo methods. The idea of
Boltzmann-factor modification towards flat histogram sam-
pling has also been generalized to other thermodynamic ob-
servables, e.g., order parameters. Multicanonical ensemble
simulations have been successfully applied to spin glasses by
sampling flat Parisi overlap order-parameter distributions,
and to the simulation of protein models, polymers and
chains. Some of the recent progress in the simulation of these
theories relies on the efficiency of multicanonical ensemble
simulations. For a recent review we refer to Ref. [6].

Multicanonical ensemble simulations have, however, a
practical disadvantage. They require an estimate on the
density-of-states function, which determines the multica-
nonical weight. In practice it turned out that there are many
ways to find approximations to the density of states, but the
situation remains somewhat unsystematic; depending on the
problem under study, different strategies were used. These
include finite-size scaling—or the recursive construction of
weights—or density-of-states sampling on energy patches.
Recently, Wang and Landau [7,8] reported on an efficient
non-Gibbsian Monte Carlo method for the direct sampling of
the density-of-states function, which can also be used as an
input to multicanonical ensemble simulations.

Any Monte Carlo algorithm designed for the efficient ex-
ploration of the free-energy landscape must visit all relevant
configurations with a large enough probability, those which
are probable and those on the barrier. Years ago, Challa and
Hetherington [9—-11] introduced the Gaussian ensemble as an
interpolation between the microcanonical and the canonical
ensemble in studies of the phase transition in the g-state
Potts model. Later, Challa and Landau studied the issue for
the case of first-order phase transitions [12]. Their observa-
tion was, that in modified ensembles, where the Boltzmann
factor is multiplied by an exponential of a negative quadratic
form, i.e., a Gaussian
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ZGME(E(), AEo) = 2 e_:BcE_[(E - E())Z/AE(Z)],
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(1.11)

configurations with energy E can be sampled, centered with
large probability close to any value E,, if only the parameter
AE, is chosen to be small enough. This single Gaussian
modified ensemble (GME) was simulated with standard
Monte Carlo methods for values of E, within the mixed
phase of a first-order phase transition and some information
on the first-order phase transition properties was extracted.
However, using this idea never became popular in realistic
studies as it was not established to what degree of efficiency
the algorithm was able to move all the relevant excitations
within the mixed phase. Similar ideas were also presented by
Bhanot et al. in a sequence of papers [13], where the Gauss-
ian of Eq. (1.11) was replaced by a step function of finite
width and infinite height. They were interested in a Monte
Carlo sampling method for the energy density of states and
the calculation of partition-function zeros. Recently, Virnau
and Miiller [14] proposed an implementation of the above
ideas through successive umbrella sampling and tested it in
grand canonical simulations of a Lennard-Jones fluid. In this
paper we introduce the multiple Gaussian modified ensemble
(MGME), which takes the product form

N
ZMGME(E17 ’EN;AEI’ ,AEN) = H ZGME(Ei?AEi)
i=1

(1.12)

of a multitude of single Gaussian modified ensembles i
=1,...,N. We show, that all relevant configurations within
the free-energy landscape can be populated for suitable val-
ues of E; and AE;, and how the density of states g(E) can be
determined from a Monte Carlo simulation of Zy;;)z. There
exists also an efficient Monte Carlo update to sample Zy;6aEs
which is parallel tempering.

Parallel tempering [15-18] originally was introduced to
reduce large autocorrelation times in spin-glass simulations.
A similar product form to the one of Eq. (1.12),

N
Zglass(Tl’ tee TN) = H Zglass(Ti) s

i=1

(1.13)

with N different glassy canonical partition functions
Zg1ass(T}), is updated with parallel tempering moves. The
similarity of Zy,ss With Zy;6pp suggests that parallel temper-
ing can also be used efficiently in MGME simulations.

In this paper we combine MGME simulations with paral-
lel tempering for the sampling of barrier-suppressed states.
MGME simulations eliminate the necessity to generate mul-
ticanonical weights in the first place, at the price of larger
computer memory requirements. At the same time, the ad-
vantages of flat—or almost flat—histogram sampling are
kept. We organize the paper as follows: Sec. II introduces the
MGME. Several subsections describe in detail issues like the
measurement of canonical probabilities, the choice of Gauss-
ian weights, and aspects of parallel tempering. Section III
reviews theoretical results for our test systems, which are the
2D and 3D Ising models. Section IV compares the perfor-
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mance of MGME simulations for the barrier calculation with
multicanonical ensemble and Wang-Landau simulations.
Section V concludes the paper.

II. MULTIPLE GAUSSIAN MODIFIED ENSEMBLES
The partition function of the MGME is defined to be

N

ZyemeAr, . AviAA LAY = [T Zoye(ALAA),
i=1
(2.1)
where ZGME(Ai’AAi) with i=1 yeee ,N,
Zoue(A,AA) = > P - A)8AT] (2.2)

conf

is a single Gaussian modified partition function. We consider
statistical mechanics models in arbitrary dimension d as
specified by their Hamiltonian H at inverse temperature (3
=1/kgT. In a generalization of the original Challa and Lan-
dau idea, we work with any thermodynamic observable A of
physical interest. It can be the energy A=E, or in magnetic
systems the magnetization A=M, or for the spin-glass case,
the Parisi overlap order parameter A=Q. In general, A is
extensive and MGME simulations yield a stochastic approx-
imant to the probability distribution function P(A),

P(A) = lz 5(A _Aconf)e_'BH

conf

(2.3)

for the occurrence of a specific A value with normalized
probability P(A) in the canonical ensemble Z of the theory.
The probability distribution function P(A) contains the
desired physical information on the free-energy landscape of
the theory. The function P(A) has possibly several stable
extremal points at observable values A,,,, for probable con-
figurations and possibly several unstable ones at values A ;,
for free-energy suppressed configurations. Free-energy barri-

ers
P(Amax)

Fy=ln ——m2

P(Amin) (24)

can have large values and may diverge with some power of
the linear system size L. In particular, we may choose A to be
the magnetization M for magnetic theories with Z(2) sym-
metry like the Ising model, in which case the magnetization
probability distribution function P(M) develops double
peaks at low temperature and

1F
op(L) == £

ZF (2.5)

turns into Binder’s definition of the magnetic interface ten-
sion, with

lim O-Binder(L) = 0yp. (26)

L—

Interface-free energies can be calculated with Binder’s
method, but in addition there exist other and in certain cases
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more efficient methods, like the calculation of o from tun-
neling masses on elongated boxes [19,20], or the integration
of surface free-energy densities along temperature directions
[21].

We may also choose A=E. The probability distribution
function P(E) of the energy

In g(E) =1n P(E) + BE + const, (2.7)

then is related to the number density of states g(E) up to an
unknown factor and MGME simulations turn into a density-
of-states sampling method. At 8=p,. and for energy-driven
first-order phase transitions P(E) again develops double
peaks. The interface tension in-between ordered and disor-
dered bulk states can be determined in a similar way as for
the magnetic case Eq. (2.6).

The Monte Carlo evaluation of the MGME determines the
probability distribution function P;(A) for the occur-
rence of a specific A value within Zy;5),z Then one employs
known properties and derives the canonical probability P(A)
from the measured Pyqe(A) data.

A. Probability measurements

The probability distribution function Pygui(A) is ob-
tained by inserting the sum over the Kronecker symbol (A
_Aconf,i)v

N

Zl_l/llGMEE 5(A - Aconf,i)
i=1

(2.8)

into the MGME partition function Z;;yz- A stochastic ap-
proximant to this probability is obtained numerically upon
forming a histogram from all configurational values A within
the Monte Carlo simulation [see Eq. (2.25)]. Formally, this
equals the sum

N

Pucup(A) = %E PoupiA), (2.9)
i=1

where the latter Py, (A) denotes normalized probabilities
for finding values A in single GME partition functions
ZGME.i3

Pouei(A) = ZE;L/IEJE A - Aconf,i)e_'BH_[(A N Ai)z/AA’z]a

conf

(2.10)

which finally are related to the canonical probability P(A) of
Eq. (2.3) via a reweighting step

Peygi(A) = P(A)e = A")z/AA’?], (2.11)

where the “free-energy constants” F; guarantee correct nor-
malizations. We observe that Egs. (2.9) and (2.11) imply the
equations

N
In P(A) = In Pyygyp(A) + In N — Ing D e Firld - 407247]
i=1
(2.12)
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P}:h{§5P00e4“—%W&¥%, i=1,....N,
A

(2.13)

which for a given input Pgpe(A) constitute an equation
system for i=1,...,N unknown values of F; and the normal-
ized P(A). A similar, but nonidentical equation system, has
surfaced some time ago in the context of Ferrenberg Swend-
sen multihistogram reweighting techniques [4] and there it
was shown that a unique solution exists. The solution can be
constructed to arbitrary precision with the help of a recursive
iteration, which for the purposes of the present paper was
simply adopted to the solution of the current problem. In this
way the measured probability Pycye(A) determines a sto-
chastic approximation to the canonical probability P(A).

B. Populating phase space

MGME simulations populate configurations, for which
the values of the thermodynamic observable A lie within
some extensive interval of size LY. The probability distribu-
tion function Pgpe(A) of Eq. (2.9) is expected to have fi-
nite, i.e., larger than exponentially small values on the inter-
val

A_SA<A,, (2.14)

with an interval length A,—A_xV growing linear with the
volume V=L¢. By construction one obtains the probability
distribution function Pygs(A) through the superposition of
N single GME probability distribution functions, Egs. (2.9)
and (2.10), whose maximum peak probability values ought
to be centered at specified points and, whose individual
width ought to be broad enough to accommodate all A values
between the maximum positions of neighboring distribu-
tions. In an attempt to fulfill these requirements we introduce
the MGMEI version of our sampling method and consider
an equal partition

A,-A
N-1

Aj=A_+(i-1) . i=1,...,N  (2.15)

of the interval [A_,A,], fixing the Gaussian central positions
of the partition function Zygue(A;,...,Ay;AA,...,AAy)
accordingly. In addition, the width of the Gaussians is chosen
to be constant,

A, A

AAi:AA:
N-1

, i=1,...,N. (2.16)

It is quite clear, that depending on the problem under
study, the number N eventually has to be tuned to large val-
ues if large barriers F'p are studied. A limiting case appears to
be the case of a regular free-energy landscape with finite
derivatives d, In P(A) in the thermodynamic limit. In this
case one can populate all A values with nonexponentially
small probabilities if N only is tuned N V. This behavior
presumably constitutes a lower bound for the number N nec-
essary in all realistic studies of barrier-free energies with
MGME simulations. In this work we scale
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N o 141 (2.17)

and thus the ratio N/Fp is fixed at a constant value. In a
second and more elaborate scheme, denoted the MGME2
version here, we relate the Gaussian width via
A -A_
AA; = AA = const ,
Fp

i=1,....,N (2.18)
to the barrier height and fix the Gaussian central positions
through a constant overlap criterion

O = > min[ Pgyp (A), Poyr,i+1(A)] =~ 0.63, i
A

=1,...,N-1, (2.19)

on neighboring i,i+ 1 Gaussian modified distributions, where
the single Gaussian probabilities are normalized to unity 1
=3,PsyE(A). This particular overlap formula, and the spe-
cific choice of the constant 0.63, ensure Metropolis accep-
tance rates P,..=~ 0.5 in the latter parallel tempering swaps of
neighboring GMEs. MGME?2 simulations utilize a nonequi-
distant spacing of the Gaussian central positions, but again
the ratio N/F} is constant for large boxes. We will find that
values N/Fp of order unity can be used to populate the phase
space.

C. Monte Carlo simulation and parallel tempering

The partition function of the MGME Eq. (2.1) is evalu-
ated with the help of Monte Carlo sampling methods in the
standard way. One generates a Markov chain of configura-
tions with transition probabilities that respect detailed bal-
ance. It is somewhat less standard that the configuration
space of MGME simulations contains N different spin con-
figurations at any step on the Markov chain. We imagine
these spin configurations to be stored on N different nodes of
a parallel computer, where each node carries a node number
a=1,...,N. There are also i=1, ... ,N different single GMEs
as labeled by their ensemble indices i, which are uniquely
mapped to nodes or actual spin configurations. Let us denote
the map from ensemble indices to nodes «(i) and the inverse
i(a). Both, the spin configurations on the nodes and the as-
signment of nodes to single GMEs are updated during the
Markov process. This way it can happen that spin configu-
rations on the a=1 node for some steps on the Markov pro-
cess represent spin configurations of the i=1 single GME,
while in later steps another, possibly the i=N ensemble, is
updated on the same node.

Clearly the first thing to do are local Monte Carlo updates
of spin degrees of freedom. One sweep is defined to be the
consecutive local update of all spins. This makes a total of
N X'V Monte Carlo steps per sweep,

1 Sweep=N X V Monte Carlo steps. (2.20)

In the present paper local heatbath updates for Ising spins
are used. The spin Hamiltonian depends on the node number
and the map i(a) for any spin. Different ensemble indices i
require updates within different single GMEs.

In parallel tempering one employs the MGME property
that any two probability distributions Pgyz(A) and
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FIG. 1. Logarithmic probability distribution function P(m) of
Eq. (3.3) from MGME2 simulations as a function of the magneti-
zation density m=M/V. The top panel shows 2D data at 5=0.5
with lattice sizes L ranging from L=30 to L=140 in steps of unit
10. The bottom panel shows 3D data at 8=0.2439 with lattice sizes
L ranging from L=16 to L=40 in steps of unit 4. The dashed ver-
tical lines denote the infinite volume-magnetization values at my.

Pgue j(A) of single GMEs have a finite overlap [see Eq.
(2.19)] for MGME2 simulations if their ensemble indices i
and j correspond to nearest neighbors |i—j|=1 in the parti-
tion of Eq. (2.15). Let us denote by A(a,n,) the value of the
thermodynamic observable on the node « at the sweep ny,
while the total number of sweeps is denoted N,. In particular,
we expect that nearby A values with
|Aa(i),n,) = A(a()),n,)| = AA (2.21)

can easily be found with finite probability in the Markov
chain. The parallel tempering (pt) move

a(i){n, + one pt move} = a(j){n,},

a(j){n, + one pt move} = a(i){n,}, (2.22)
is governed by the Metropolis acceptance rate
P,..=min[1,e729] (2.23)

with
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[A(a(j).n,) — A ] +[A(a(i),n,) - A
- AA?

[A(a(l)Jls) _Ai]2 + [A(a(])7ns) _ A/]2
+ AA2

AG=

(2.24)

and results into updates with finite acceptances, P,..~0.5 for
MGME?2 simulations. Technically and in the context of the
present paper, each sweep with local updates is supple-
mented by exactly N parallel tempering moves on pairs of
neighboring i and j values, which are randomly drawn from
the set of all neighboring pairs. Parallel tempering only uses
a small fraction of the amount of computer time spent in
local spin updates.
Finally, we arrive at a stochastic approximant

N Ny
1 1
Pyeue(A) = ;,2 v > dA-Alayny)]  (2.25)
a=1"Vsng=1

to the probability distribution function Pugue(A) of Eg.
(2.9), which as described in Sec. I A, is used to measure the
canonical probability P(A).

III. KNOWN RESULTS FOR 2D AND 3D ISING MODELS

The present study uses the two- and the three-dimensional
ferromagnetic Ising models in their Z(2) symmetry-broken
phase at low temperature to investigate the efficiency of
MGME simulations for the calculation of barrier-free ener-
gies. The 2D Ising model is conceptually simple and it al-
lows us to use rigorous results in the comparison to high-
precision simulation data, which are obtained from our new
simulation technique. The partition function of the Ising
model is given by

Z=> P, (3.1

conf

with the zero-field Hamiltonian
H::—Esis., (32)

(%)
where H contains the usual nearest-neighbor interaction of

spins s;==+1. Our efforts will be focused on the probability
distribution function

P(M) = %E 5<M Y si)e_ﬁH,

conf i

(3.3)

which is proportional to the constraint-magnetization parti-
tion function P(M)xZ(m,[). The thermodynamic observ-
able A here corresponds to the magnetization M and m
=M/V is the magnetization density. In 2D we study the
theory at 8=0.5, i.e., for temperatures 7/7,=0.88... below
the critical point B,=In(1+v2)/2. In 3D we choose S
=0.2439 at T/T.=0.59... with B.=~0.41. In the low-
temperature phase the probability distribution function P(M)
develops double peaks and most probable configurations are
located at magnetization densities m=+m,,,. For given pa-
rameters and on large boxes my,,, will approach Onsager’s
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TABLE I. Run parameters for MGME2 Ising-model simulations in 2D (8=0.5) and 3D (8=0.2439). L
denotes the box size while N is the number of GMEs. M_ and M, denote the (extensive) observable interval
and AM is the Gaussian width, which with increasing size increases linearly in L. The number N has a

constant value in units of the barrier Fp.

D L N M_ M, AM N/Fy
2 30 10 -27 888 131.39 0.73
2 40 16 -62 1562 149.96 0.88
2 50 22 -18 2418 166.18 0.96
2 60 28 -8 3462 186.85 1.02
2 70 34 -109 4694 213.14 1.06
2 80 40 -152 6110 236.73 1.10
2 90 44 -130 7716 269.75 1.07
2 100 50 -189 9496 293.34 1.10
2 110 55 -120 11474 319.59 1.10
2 120 59 -21 13638 351.03 1.08
2 130 64 -226 15980 383.56 1.08
2 140 68 -124 18514 414.82 1.06
3 16 13 -23 2924 326.04 0.34
3 20 22 -186 5692 391.68 0.37
3 24 32 -289 9800 462.42 0.38
3 28 43 —245 15582 538.87 0.37
3 32 56 -210 23312 613.91 0.37
3 36 71 —341 33112 688.48 0.37
3 40 85 -125 45454 782.32 0.36

magnetization value m;=0.911319... in 2D, while m,
=0.709 13(7) was measured in 3D [22]. The 2D planar inter-
face tension o,=2+In[tanh(B)]/ B in-between bulk phases of
opposite magnetization at 8=0.5 has the exact value o
=0.228 063... [23], while in 3D at B=0.2439, o,
=0.074 03(30) was determined in numerical simulations
[22]. Interface tensions determine the asymptotic large L be-
havior of the barrier-free energy

P(1Myya)

o 2 Ld—l
Pm=0) 70

Fgp=In (3.4)
for boxes of size V=L with periodic boundary conditions.
For purposes of orientation, we display in Fig. 1 our final
results for the probability distribution functions P(M) for the
2D (top panel) and the 3D (bottom panel) cases. We display
results from MGME2 simulations on lattices with volumes
302 to 1407 in 2D and volumes 16° to 40% in 3D. It can be
noted that the largest barrier values are about Fz=65 in 2D
and Fp=235 in 3D.

2D distributions P(M) were already studied in Ref. [24]
with the aim to understand the dynamics of the decay of
metastable states. A particular interesting aspect, which re-
cently received some interest, is the existence of an
evaporation-condensation (E/C) phase transition [25] within
the Ising models Z(m, B) [26,5,27,28].

IV. RESULTS OF SIMULATIONS

MGME simulations are implemented for the 2D and 3D
Ising models along the lines of the previous sections. In 2D

and at 8=0.5 it was decided to simulate L? boxes with peri-
odic boundary conditions on lattice sizes L ranging from L
=30 up to L=140. In 3D at $=0.2439 we simulated L’ boxes
with periodic boundary conditions on lattice sizes L ranging
from L=16 up to L=40. In 2D as well as in 3D we first
conducted a set of MGMEI simulations with an observable
interval

A =M_=0, A,=M,=V. 4.1)

The corresponding number N of GME tunings had the L
dependencies N(L)=(L/2)+1 for 2D and N(L)=(L+1)?/41
in 3D. In a second round of MGME?2 simulations we tuned
the Gaussian width as

\%
AM =122 (4.2)
Fp(L)
in 2D and as
\%
AM = 40 (4.3)
Fg(L)

in 3D. The MGMEI estimate for the canonical probability
P(M) then determines Pgye (M), which satisfies the con-
stant overlap criterion of Eq. (2.19), fixing the Gaussian cen-
tral positions. In 2D the total number of sweeps N, [see Eq.
(2.20)] was N,=10°[(L/2)+1]/N for each single Monte
Carlo run MGMEI or MGME2 at given L. On our largest
system with L=140 the total statistics accumulates to 1.4
X 10'? single-spin heat bath steps and to 7.1 X 107 parallel
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FIG. 2. Acceptance rates (P,) of parallel tempering swaps in
MGME?2 simulations as a function of the Gaussian central positions
M;, i=1,...,N with N=68 on a 2D 140 box on the top and with
N=85 on a 3D 403 box on the bottom.

tempering updates. In 3D the total number of sweeps N, [see
Eq. (2.20)] was kept at a rather small number N,=4
X 10%/N in order to facilitate a one-to-one comparison to the
data in Ref. [22], which have 4 X 10° sweeps in multicanoni-
cal simulations. Some run parameters, like the number N of
Gaussians as a function of the system size L can be found in
Table I.

The Metropolis acceptance rates of MGME?2 parallel tem-
pering updates turned out to be close to (P,..)=0.5 in the
mean, for all of our runs. The dependencies of (P,..) on the
Gaussian central positions M; with i=1,...,N are displayed
in Fig. 2 on the 2D 140? box (top panel) and the 3D 403 box
(bottom panel).

Parallel tempering moves are designed to ensure ergodic-
ity and configuration transport to arbitrary phase-space loca-
tions. The use of parallel tempering in a 2D MGME simula-
tion can be witnessed in the top panel of Fig. 3, where a
MGMEI magnetization density time series is displayed for a
particular node out of 41 nodes on the 80 lattice. The Monte
Carlo process visits configurations at m = 0, the lower dashed
horizontal line, as well as densities at m=m,, the upper
dashed horizontal line, and a typical ergodicity time scale
appears to be several ten thousand sweeps for the given lat-
tice size. The bottom panel shows a time series from flat-
histogram multicanonical simulations at the same values of
parameters. Judging by the eye, both simulations perform at
a similar level of efficiency. Unfortunately, MGMEI as well
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FIG. 3. (a) Magnetization density m time series in the 2D Ising
model for MGME simulations (MGME]1) on a 802 lattice with a
number of GMEs N=41. The time series has a length of 10° sweeps
and is obtained from configurations, which reside on the first node.
Similar time series exist on an additional 40 nodes, which, however,
cannot be displayed. (b) Magnetization density m Monte Carlo time
series for multicanonical ensemble simulations on a 807 lattice at
the same parameters. We display a series of 10° sweeps from a total
run having a length of 41 X 10% sweeps. The lower dashed lines in
both panels are at m=0, while the upper ones have m=my.

as MGME2 simulations, only support autocorrelation-time
measurement intervals, which are smaller by a factor N7L as
compared to, e.g., multicanonical simulations at the same
number of local spin updates. We therefore do not study
ergodicity time scales here in great detail. Instead we judge
the efficiency of our various simulational approaches by the
magnitude of the statistical error on Binder’s interface ten-
sion value op. All of our analysis is based on jackknife-
method statistical error calculations at a number of ten jack-
knife bins.

MGME simulations are designed to sample configurations
with M values in-between M_=0 and M, =m,V with finite
and large probabilities. Some probability distribution func-
tions Pycye(M) from MGME?2 simulations, for the occur-
rence of magnetization M values within Zygyp, are dis-
played in Fig. 4. The top panel contains probabilities in 2D
on 30? and 140? boxes, which were obtained with the run
parameters in Table I, while the bottom panel shows 3D data
on 16* and 40° boxes again with run parameters as in Table
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T

o

FIG. 4. (a) Multihistograms Py;gy(m) in 2D from MGME2
simulations with the number of Gaussians as given in Table I. We
display data with box volumes L?=30% and 140%. (b) Multihisto-
grams Py;6pe(m) in 3D from MGME2 simulations with the number
of Gaussians again as given in Table I. The box volumes are L3
=16 and 40°. The vertical lines in both figures correspond to the
Ising-models bulk magnetization value m. The maximum values of
Puycue(m) were normalized to unity.

I. Phase space is covered with finite probabilities for magne-
tization density values that range from m=0 up to densities
somewhat larger than m=m,. The distribution functions
however, are not flat. They exhibit a marked surplus in the
vicinity of the bulk-magnetization values, and at least two
diplike depletion regions. For small m values the latter cor-
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respond to the droplets shape transitions from a slab to a
circular droplet in 2D and from a slab to a cylinder in 3D
[29]. The right-hand sided dips at large m values mark the
evaporation-condensation (E/C) phase transition from a gas
of small droplets to a single large nucleated droplet. The 3D
shape transition from a sphere to a cylinder is not visible.
The dip positions have large finite-size rounding corrections,
as compared to their predicted values (see Refs. [5,22,29]).
The canonical probabilities P(M) as obtained from these data
are displayed in Fig. 1.

Our final results for Binder’s interface tension oy [Eq.
(2.5)] from the MGME2 simulations in the 3D Ising model
are given in Table II. The infinite volume extrapolation of o
used an identical approach as described in Ref. [22]. The
MGME2 data are compared to a multicanonical ensemble
simulation at otherwise identical parameter values. In par-
ticular, the number of local spin updates in the MGME2
simulation is the same as the one in the multicanonical en-
semble simulation. Within error bars we find compatible re-
sults and, comparing the size of statistical error bars, both
algorithms are of similar performance.

For the 2D Ising model we directly compare MGMEI1 and
MGME?2 simulations with flat-histogram multicanonical en-
semble simulations (muca) [2,3], and with Wang-Landau
(WL) simulations [7,8], all for the sampling of the probabil-
ity P(M) and the determination of o. For purposes of a fair
comparison, the total number of local Monte Carlo steps in
each of the four approaches is kept the same. This means,
e.g., that on the 1407 lattice a total of 71X 10° sweeps is
simulated in the multicanonical ensemble. In particular, mul-
ticanonical ensemble simulations with a flat histogram
(muca) use the multicanonical weight

—In P(M)

eWmicd™) = const e (4.4)

where P(M) is the magnetization probability distribution
function as obtained from previous MGMEI or MGME2
simulations. Finally, Wang-Landau simulations have origi-
nally been introduced to sample the energy density of states,
but can easily be modified to magnetic systems for the sam-
pling of the probability P(M). Let us note that Wang-Landau
simulations depend on a parameter value f=exp(e)=1+e¢,

TABLE 1I. Finite-size results for Binder’s interface tension o [Eq. (2.5)] from MGME2 Ising-model
simulations in 3D at $=0.2439 in the third column. L denotes the box size. The second column contains data
from a flat-histogram multicanonical ensemble simulation at an identical number of local Monte Carlo steps
[22]. o denotes the mean and columns five and six display deviations from the mean in units of the mean
statistical error for the corresponding data sets. The last row contains infinite volume extrapolated results.

L op (Ref. [22]) o5 MGME2 o [op—0]/ Sog [op—0]/ Sog
16 0.069 89(13) 0.070 07(11) 0.069 99(09) 0.94 -121

20 0.072 54(13) 0.072 61(07) 0.072 60(06) 0.28 -0.88

24 0.073 49(11) 0.073 49(20) 0.073 49(10) -0.04 0.01

28 0.073 63(14) 0.073 53(13) 0.073 58(09) -0.47 0.58

32 0.073 67(13) 0.073 87(16) 0.073 75(10) 1.22 -0.75

36 0.073 56(21) 0.073 56(21)

40 0.073 60(13) 0.073 60(13)

2 0.074 03(30) 0.073 76(25) 0.073 87(19) -0.57 0.84
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FIG. 5. From top to bottom and from left to right: (a) 2D results for Binder’s interface tension [Eq. (2.5)] at 8=0.5 in the Ising model
from MGMEI simulations, (b) from MGME2 simulations, (c) from flat-histogram multicanonical ensemble muca simulations, and (d) from
WL simulations. The dashed horizontal lines mark the infinite-volume exact result 0,=0.228 063... . The solid circles in all panels denote
the infinite-volume extrapolations using the fit Eq. (4.5). The fit results can be inspected in Table III.

which together with g(E) is tuned towards a final value
Srina1 = 1 very close to unity. Within their scheme f, or for that
matter €, is used to update the density of states with prob-
ability unity In g(E) —1n g(E) + € at energy E for each local
Monte Carlo step. A similar update exists for the magnetic
case: In P(M)—In P(M)+e€ at magnetization M. The data
presented in this paper stem from simulations with e,
=0.00001 or fgpu=1.000010. Again P(M) from previous
MGMEI or MGME2 simulations is used as an input to
Wang-Landau simulations and thus the somewhat delicate
tuning of f, generic to Wang-Landau simulations, is avoided.
We start directly with simulations at f=fg,,; and from an
already quite precise probability P(M).

The lattice-size L dependence of Binder’s magnetic inter-
face tensions [Eq. (2.5)] and fits to the data with the form Eq.
(4.5) for all of our simulations in the 2D Ising model, are
displayed in the four panels of Fig. 5. The finite-size depen-
dence of these data is extremely well reproduced by

a
op(L) =0+~ (4.5)
L
and the simple matching of the fit parameters, as well as the
magnitude of fit parameter errorbars, demonstrates that all
Monte Carlo methods compete on the same level of accuracy
and computational efficiency. The fit parameters are found in

Table IV and correspond to fits including all data points. The
capillary droplet model in 2D predicts the presence of 1/L
and the absence of In(L)/L finite-size corrections for Bind-
er’s interface estimate in full accordance with our findings. If
we compare the finite-size behavior of Binder’s magnetic
interface tension with Onsager’s exact result for the antifer-
romagnetic seam, as given in Ref. [30], we find that the 1/L
correction of Eq. (4.5) is not present in Onsager’s result,
where the asymptotic approach to the value oy is actually
from below. This can be explained by the different setup of
both calculations. Onsager’s calculation contains a single-
line defect of length L in a system of size L? with periodic
boundary conditions, while our simulation for Binder’s defi-
nition in the same system of size L? contains two indepen-
dently fluctuating domain walls of length L which interact
via entropic repulsion. This effect gives a positive contribu-
tion to the free energy that explains the deviation from On-
sager’s result for finite L.

Finally, we display in Fig. 6 the statistical errors do on
finite-sized o data as a function of the lattice size L. The
three panels compare the statistical errors of MGME2 simu-
lations (circles connected with solid polygons) with the er-
rors of MGMEI (panel a), WL (panel b), and muca (panel ¢)
simulations. Error bars are gently rising with increasing sys-
tem size (at the given statistics), but none of the different
approaches wins the competition with large error-bar reduc-
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FIG. 6. The statistical errors dop on finite-sized oy data as a
function of the lattice size L comparing MGME?2 simulations with
MGMEI (a), WL (b), and muca (c) bab simulations.

tion factors. Wang-Landau simulations are possibly better by
a factor of 2 in error bars (factor of 4 in efficiency) on a large
system, but again one has to take into account the effort of f
tuning for Wang-Landau simulations, and that one will most
likely level off a performance gain.

V. CONCLUSION

Within the present work, MGME simulations for the
Monte Carlo sampling of such interesting things like barrier-
free energies or density of states are introduced. MGME
simulations populate phase through the superposition of
probabilities from a multitude of single GMEs, and using
parallel tempering, ergodicity is restored to a degree of effi-
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FIG. 7. Parisi overlap order-parameter density g=Q/V distribu-
tion P as a function of the scaled ¢L%? in the 3D EA spin-glass
model. Lattice sizes are 43 (circles), 6° (triangles), and 8> (crosses).
The inverse temperature is $=0.901, close to criticality, and the
data can be directly compared to a figure in Kawashima’s and
Young’s work [34].

ciency, which for the considered case was similar to multi-
canonical ensemble simulations. Unlike in multicanonical
ensemble simulations, there is, however, no weight factor on
the input side of the simulation, and once the number N of
GMEs is chosen to be large enough, the benefits of MGME
simulations are expected to become apparent. And, unlike in
Wang-Landau simulations, no particular parameter tuning to-
wards frna= 1+ €gny 18 needed. For any step on the Markov
chain of MGME simulations an N-tuple of configurations has
to be kept in the memory of a computer, and thus some price
has to be paid. On the other hand, MGME simulations are
predestined to be implemented on parallel computers and
memory limitations there are far less serious than on single-
node machines. A somewhat related approach of Laio and
Parrinello [31] also employs Gaussian bias potentials in an
attempt to cover free-energy landscapes. Their “metadynam-
ics” simulations, however, just like Wang-Landau simula-
tions at finite step size e, are out of equilibrium, and thus a
final map into a Markovian process is considered [32].

One of the main concerns for Monte Carlo sampling
methods of free-energy landscapes is the scalability to large
system sizes and/or the scalability to large free-energy bar-
rier values. The issue has two aspects: one is the effective
performance of some algorithm for the solution of a particu-
lar problem; the other is the principal behavior in some
asymptotic region of the parameters, like the lattice size L or
the temperature. In the present work, we show for a particu-
lar simple and well understood problem that the efficiency of
all three competitors, muca, MGME, and Wang-Landau
simulations, is in fact quite similar. In particular, we tuned
the number N of GMEs within MGME simulations linear
with the 2D or 3D barrier size, and that is enough to deter-
mine barriers precisely, efficiently, and competitively. We
emphasize that MGME simulations are free of recursive or
iterative elements. Even an equal-spaced partition of Gauss-
ians performs at the level of muca and WL simulations once
N=Fp.
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The case of a rough free-energy landscape has already
been studied in an exploratory work. Using an N tuning of
the kind N L? in 3D, we display in Fig. 7, for purposes of
illustration, the fixed-point shape of the Parisi overlap order-
parameter [33] density g=Q/V distribution, at a value of the
inverse temperature $=0.901, close to criticality, on 4°, 6°,
and 83 lattices for the Edwards Anderson spin-glass model.
The average over frustrations for each lattice contains a sum
over several thousand realizations, which was mastered with
MGME simulations without ever fine tuning anything. Nei-
ther the multicanonical weight factors, nor the f tuning of
Wang-Landau simulations, had to be babied on the set of all
frustrations in any way.

The asymptotic performance of free-energy barrier Monte
Carlo sampling is a nontrivial issue, as was recently demon-
strated for multicanonical ensemble simulations of mixed
phases in 2D: The hidden free-energy barrier at the so-called
crystal-shape phase transition yields some residual exponen-
tial slowing down [5]. One must expect that all competitors,
muca, MGME, and Wang-Landau simulations are affected

PHYSICAL REVIEW E 74, 036702 (2006)

by such free-energy singularities, but the situation remains
far from being clear today, especially for the case of rough
free-energy landscapes and mixed phases in higher-
dimensional systems.

Finally, we note that recently some work went into im-
provements of multicanonical ensemble simulations via non-
flat histogram sampling [35] and also into the feedback im-
provement of parallel tempering [36,37]. Tt would be
interesting to apply these ideas to the current problem.
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